Skip to main content

Stærðfræði og stærðfræðimenntun

Stærðfræði og stærðfræðimenntun

Verkfræði- og náttúruvísindasvið

Stærðfræði og stærðfræðimenntun

BS gráða – 180 einingar

Námið er sérstaklega ætlað þeim er hyggja á kennslustörf í framhaldsskólum og er í samstarfi við Menntavísindasvið.

Byggður er traustur og breiður grunnur í stærðfræði. Áhersla er lögð á að nemendur kynnist sem flestum hliðum stærðfræðinnar. Námið gefur góðan grunn fyrir meistaranám í Menntun framhaldsskólakennara, en opnar einnig fleiri möguleika á framhaldsnámi í stærðfræði og tölfræði.

Skipulag náms

X

Stærðfræðigreining I (STÆ104G)

Þetta er grunnnámskeið um stærðfræðigreiningu í einni breytistærð. Æskilegur undirbúningur er að nemendur hafi lokið námskeiðum á framhaldsskólastigi sem fjalla um algebru, rúmfræði, hornaföll, diffrun og heildun. Námskeiðið leggur grunn að skilningi á greinum á borð við náttúrufræði, verkfræði, hagfræði og tölvunarfræði. Umfjöllunarefni námskeiðsins eru meðal annars:

  • Rauntölur.
  • Markgildi og samfelld föll.
  • Deildanleg föll, reglur um afleiður, hærri afleiður, hagnýtingar deildareiknings (útgildisverkefni, línuleg nálgun).
  • Torræð föll.
  • Meðalgildissetning, setningar l'Hôpitals og Taylors.
  • Heildun, ákveðin heildi og reiknireglur fyrir þau, stofnföll, óeiginleg heildi.
  • Undirstöðusetning stærðfræðigreiningarinnar.
  • Hagnýtingar heildareiknings: Bogalengd, flatarmál, rúmmál, þungamiðjur.
  • Venjulegar afleiðujöfnur: fyrsta stigs línulegar diffurjöfnur, annars stigs línulegar diffurjöfnur með fastastuðlum.
  • Runur og raðir, samleitnipróf.
  • Veldaraðir, Taylor-raðir.
X

Línuleg algebra A (STÆ106G)

Fjallað er um undirstöðuatriði línulegar algebru yfir rauntölurnar með áherslu á fræðilegu hliðina.

Viðfangsefni: Línuleg jöfnuhneppi,fylkjareikningur, Gauss-eyðing og Gauss-Jordan-aðferð.  Vigurrúm og hlutrúm þeirra.  Línulega óháð hlutmengi, grunnar og vídd.  Línulegar varpanir, myndrúm og kjarni.  Depilmargfeldi, lengd og horn.  Rúmmál í margvíðu hnitarúmi og krossfeldi í þrívíðu.  Flatneskjur og stikaframsetning þeirra.  Hornrétt ofanvörp og þverstaðlaðir grunnar.  Aðferð Grams og Schmidts.  Ákveður og andhverfur fylkja.  Eigingildi, eiginvigrar og hornalínugerningur.

X

Stærðfræðimynstur (TÖL104G)

Yrðingar, umsagnir og rökleiðingar. Mengjareikningur og Boolealgebrur. Þrepun og endurkvæmni. Grunnaðferðir við greiningu reiknirita og talningu. Einföld reiknirit í talnafræði. Vensl, eiginleikar þeirra og framsetning. Tré og net og einföld reiknirit tengd þeim. Strengir, dæmi um mál, stöðuvélar og málskipan.

Dæmatímar
Það eru 7 dæmahópar og nemendur velja sér hóp. Dæmatímar eru tvennskonar:
Venjulegir (5 hópar): 2x40 mín. vikulega, á eftir hverjum er 40 mín. stoðtími 
Hraðferðir (2 hópar): 1x40 mín. vikulega
Sjá nánar í stundaskrá

X

Tölvunarfræði 1a (TÖL105G)

Einingar til BS-prófs gilda aðeins fyrir annaðhvort TÖL101G Tölvunarfræði 1 eða TÖL105G Tölvunarfræði 1a.

Forritun í Python (sniðið að verkfræðilegum og raunvísindalegum útreikningum): Helstu skipanir og setningar (útreikningur, stýri-setningar, innlestur og útskrift), skilgreining og inning falla, gagnatög (tölur, fylki, strengir, rökgildi, færslur), aðgerðir og innbyggð föll, vigur- og fylkjareikningur, skráavinnsla, tölfræðileg úrvinnsla, myndvinnsla. Hlutbundin forritun: klasar, hlutir, smiðir og aðferðir. Hugtök tengd hönnun og smíði tölvukerfa: Forritunarumhverfi, vinnubrögð við forritun, gerð falla- og undirforritasafna og tilheyrandi skjölun, villuleit og prófun forrita.

X

Aðgerðagreining (IÐN401G)

Í námskeiðinu er nemendum kynnt hvernig gera á skipulega mynd af ákvörðunar- og bestunarverkefnum í aðgerðagreiningu.
Að námskeiði loknu eiga nemendur að hafa færni í að setja upp, greina og leysa stærðfræðileg líkön sem standa fyrir raunhæfum verkefnum og hvernig meta eigi lausn þeirra á gagnrýninn hátt. Tekin eru fyrir línuleg bestun og Simplex aðferðin, auk skyld fræðileg efni.
Námskeiðið kynnir auk þess stærðfræðileg líkön fyrir einstök verkefni; flutningsverkefni, úthlutunarverkefni, netverkefni og heiltölubestun. Nemendur kynnast einnig sérhæfðu forritunarmáli við líkangerð fyrir línulega bestun.

X

Algebra og algebrukennsla (SNU401G)

Í námskeiðinu verður farið í valin viðfangsefni úr algebru, skólaalgebru og sögu algebrunnar. Fjallað verður um algebrukennslu á mismunandi skólastigum og þróun algebruhugsunar hjá nemendum á ýmsum aldursskeiðum.  

Hluti námskeiðsins er vettvangsnám og undirbúa nemar kennslu þar sem þeir kynna sér og kenna m.a. algebru á vettvangi. Að vettvangsnámi loknu ígrunda þeir kennsluna og vinna úr henni.

X

Hagnýtt stærðfræði í námi og kennslu (SNU402M)

Námslýsing á íslensku:*  Í þessu námskeiði er fléttað saman stærðfræði og kennslufræði stærðfræðinnar. Nemendur kynnast líkindafræði og tölfræði, búa til stærðfræðilíkön og læra að nálgast stærðfræðikennslu út frá líkanasmíð. Meðal þess sem fjallað er um í námskeiðinu eru um umraðanir, samantektir, líkindareikningur sem byggir á talningu atburða, tvíkostadreifing og líkindadreifingar almennt. Fengist er við það hvernig ályktanir eru dregnar um líkindi út frá gögnum og hvernig tölvuhermanir geta nýst í þeim tilgangi. Kynntar eru mismunandi gerðir stærðfræðilíkana, svo sem líkön um línulegt samband, veldisvísisvöxt, öfugt hlutfall, veldisfall, línulega bestun með tveimur breytistærðum og netafræðileg líkön.

Fjallað verður um kennslufræði líkinda- og tölfræði og stærðfræðikennsla almennt skoðuð og greind út frá sjónarhorni líkanagerðar. Nemar fást við að velja og aðlaga verkefni fyrir kennslu líkinda- og tölfræði og að skipuleggja kennsluferli. Lögð er áhersla á stærðfræðikennslu sem snertir á mikilvægum álitamálum í samtímanum, svo sem loftslagsbreytingum og heimsfaröldrum.

X

Líkindareikningur og tölfræði (STÆ203G)

Grundvallarhugtök í líkindafræði og tölfræði, stærðfræðileg undirstaða þeirra og beiting með tölfræðihugbúnaðinum R. 

  • Líkindi, slembistærðir og væntigildi þeirra
  • Mikilvægar líkindadreifingar
  • Úrtök, lýsistærðir og úrtaksdreifing lýsistærða
  • Metlar og öryggisbil
  • Hugmyndafræði tilgátuprófa
  • Mikilvæg tilgátupróf
  • Línuleg aðhvarfsgreining

X

Stærðfræðigreining II (STÆ205G)

Í námskeiðinu er fengist við stærðfræðigreiningu falla af mörgum breytistærðum. Helstu hugtök sem koma vip sögu eru:

Opin mengi og lokuð. Varpanir, markgildi og samfelldni. Deildanlegar varpanir, hlutafleiður og keðjuregla. Jacobi-fylki. Stiglar og stefnuafleiður. Blandaðar hlutafleiður. Ferlar. Vigursvið og streymi. Sívalningshnit og kúluhnit. Taylor-margliður. Útgildi og flokkun stöðupunkta. Skilyrt útgildi. Fólgin föll og staðbundnar andhverfur. Ferilheildi, stofnföll. Heildun falla af tveimur breytistærðum. Óeiginleg heildi. Setning Greens. Einfaldlega samanhangandi svæði. Breytuskipti í tvöföldu heildi. Margföld heildi. Breytuskipti í margföldu heildi. Heildun á flötum. Flatarheildi vigursviðs. Setningar Stokes og Gauss.

X

Inngangur að líkindafræði (STÆ210G)

Þetta er viðbót við námskeiðið "Líkindareikningur og tölfræði" STÆ203G. Farið er ítarlegar í frumatriði líkindafræðinnar með áherslu á skilgreiningar og sannanir. Námskeiðið er undirbúningur fyrir M-námskeiðin tvö í líkindafræði og M-námskeiðin tvö í tölfræði sem kennd eru á víxl annað hvert ár.

Viðfangsefni umfram þau sem koma við sögu í líkindahluta STÆ203G:

Skilgreining Kolmogorovs. Útleiðslur á reglum um samsetta atburði og skilyrt líkindi. Útleiðsla fyrir strjálar og samfelldar stærðir á reglum um væntigildi, dreifni, samdreifni, fylgni, og skilyrt væntigildi og dreifni. Útleiðslur á reglum um Bernoulli-, tvíkosta-, Poisson-, jafnar, veldis-, normlegar og gamma-stærðir. Útleiðsla á halasummureglu væntigildis og útleiðsla á væntigildi strjálu veldisstærðarinnar. Útleiðsla á reglunni um minnisleysi og veldisstærðir. Útleiðsla á dreifingum summu óháðra stærða s.s. tvíkosta-, Poisson-, normlegra og gamma-stærða. Líkinda- og vægisframleiðsluföll.

X

Þroska- og námssálarfræði (KME301G)

Tilgangur þessa námskeiðs er að nemendur öðlist heildarsýn á þroska barna frá fæðingu og fram á unglingsár.

Inntak/viðfangsefni:
Fjallað verður um þær breytingar sem verða á þroska barna á mismunandi sviðum og aldursskeiðum og helstu kenningar sem notaðar hafa verið til að varpa ljósi á þessar breytingar. Fjallað verður um vitsmunaþroska, tilfinningaþroska og þróun tilfinningalegra tengsla, félagsþroska, þróun sjálfsmyndar og siðferðisvitundar. Námskenningum og vistfræðilegum kenningum (ecological approach) verður einnig gerð skil. Rætt verður um orsakir og eðli einstaklingsmunar, samfellu í þroska og sveigjanleika þroskaferlisins. Tengsl náms og þroska, áhugahvöt og áhrif uppeldis, menningar og félagslegra aðstæðna á þroska barna verða einnig til umfjöllunar. Áhersla verður lögð á gildi þroskasálfræðinnar í uppeldis- og skólastarfi.

Vinnulag:
Kennsla fer fram í fyrirlestrum og umræðu/verkefnatímum. Í umræðu/verkefnatímum fá nemendur þjálfun í að ræða námsefnið á gagnrýninn hátt.

X

Rúmfræði (SNU306G)

Viðfangsefni eru úr sígildri rúmfræði. Undirstaða og uppbygging rúmfræði í sléttu. Hugtök, frumforsendur, skilgreiningar og setningar um samsíða línur, marghyrninga og hringi. Áhersla er lögð á röksemdafærslu og sannanir á setningum. Stuttlega er fjallað um þrívíðar rúmmyndir. Helstu reglur um flatarmál, ummál og rúmmál.

X

Stærðfræðigreining III (STÆ302G)

Í námskeiðinu er fjallað undistöðuatriði um tvö svið stærðfræðigreiningar, tvinnfallagreiningu og afleiðujöfnur, með áherslu á hagnýtingu og útreikninga á lausnum.

Viðfangsefni: Tvinntölur og varpanir á svæðum í tvinntalnasléttunni. Föll af einni tvinnbreytistærð. Fáguð föll. Veldisvísisfallið, lograr, rætur og horn. Cauchy-setningin og Cauchy-formúlan. Samleitni í jöfnum mæli. Veldaraðir. Laurent-raðir. Leifareikningur. Hagnýtingar á tvinnfallagreiningu í straumfræði. Venjulegar afleiðujöfnur og afleiðujöfnuhneppi. Línulegar afleiðujöfnur  með fastastuðlum. Ýmsar aðferðir til að reikna út sérlausnir. Green-föll fyrir upphafsgildisverkefni. Línuleg afleiðujöfnuhneppi. Veldisvísisfylkið. Veldaraðalausnir og aðferð Frobeniusar. Laplace-ummyndun og notkun hennar við lausn á afleiðujöfnum. Leifaformúlur fyrir Fourier-myndir og andhverfar Laplace-myndir.

X

Hagnýtt línuleg tölfræðilíkön (STÆ312M)

Í námskeiðinu er fjallað um einfalda og fjölvíða aðhvarfsgreiningu ásamt fervikagreiningu (ANOVA) og samvikagreiningu (ANCOVA). Að auki er farið í tvíkosta aðhvarfsgreiningu (binomial regression) og rætt um hugtök því tengt, svo sem gagnlíkindi (odds) og gagnlíkindahlutfall (odds ratio).
Námskeiðið er framhald af dæmigerðu grunnnámskeiði í tölfræði sem kennd eru á hinum ýmsu sviðum skólans. Farið verður í aðferðir til að meta stika í línulegum líkönum, hvernig smíða má öryggisbil og kanna tilgátur fyrir stikana, hverjar forsendur líkananna eru og hvað hægt sé að gera sé þeim ekki fullnægt. Verkefni eru unnin í tölfræðihugbúnaðinum R.

X

Netafræði (STÆ520M)

Net, netamótanir og netaeinsmótanir. Hlutnet, spannandi hlutnet. Vegir, tengd net. Örvanet. Tvíhlutanet. Euler-net og Hamilton-net; setningar Chvátals, Pósa, Ores og Diracs. Keppnisnet. Tré, spannandi tré, trjáfylkjasetningin, Cayley-setningin. Vegin net, reiknirit Kruskals og Dijkstra. Flæðinet, setning um hámarksflæði og lágmarkssnið, Ford-Fulkerson-reikniritið, Menger-setningin. Spyrðingar, Berge-setningin, giftingarsetning Halls, König-Egerváry-setningin, Kuhn-Munkres-reikniritið. Óaðskiljanleg net, tvítengd net. Lagnet, Euler-formúla, Kuratowski-setningin, nykurnet. Greypingar neta í fleti, Ringel-Youngs-Mayer-setningin. Litanir, litunarsetning Heawoods, Brooks-setningin, litamargliða; leggjalitanir, Vizing-setningin.

X

Fléttufræði (STÆ533M)

Námskeiðið er ætlað nemendum á öðru og þriðja ári. Markmiðið er að kynna nemendum ýmis fléttufræðileg kerfi, aðferðir við talningu og gagnlega eiginleika. Hagnýtingar á þessum kerfum og aðferðum.

X

Mengi og firðrúm (STÆ202G)

Mengjafræði: Vensl; jafngildisvensl og raðvensl. Teljanleg mengi og óteljanleg. Samstétta mengi. Uppbygging talnakerfanna. Frumatriði um firðrúm: Opin mengi og lokuð, samleitnar runur og Cauchy-runur, þéttipunktar. Samfelldni og samfelldni í jöfnum mæli. Samleitni og samleitni í jöfnum mæli. Fallarunur og fallaraðir. Þjöppuð firðrúm. Samhangandi mengi. Fullkomin firðrúm og fullkomnun firðrúms. Fastapunktssetning Banachs; tilvistarsetning um afleiðujöfnu fyrstu raðar. Kennslubækur ákveðnar síðar.

X

Töluleg greining (STÆ405G)

Einingar til BS-prófs gilda aðeins fyrir annaðhvort REI201G Stærðfræði og reiknifræði eða STÆ405G Töluleg greining.

Undirstöðuhugtök um nálgun og skekkjumat. Lausn línulegra og ólínulegra jöfnuhneppa. PLU-þáttun. Margliðubrúun, splæsibrúun og aðhvarfsgreining. Töluleg nálgun afleiða og heilda. Útgiskun. Töluleg lausn upphafshafsgildisverkefna fyrir venjuleg afleiðujöfnuhneppi. Fjölskrefaaðferðir. Töluleg lausn jaðargildisverkefna fyrir venjulegar afleiðujöfnur.

Gefin er einkunn fyrir skriflegar úrlausnir á forritunarverkefnum og vegur hún 30% af heildareinkunn. Stúdent verður að hafa lágmarkseinkunn 5 bæði fyrir verkefni og lokapróf.

X

Fjölbreytileg nálgun á stærðfræðikennslu í framhaldsskólum (SNU503M)

Námskeiðið verður næst kennt haustið 2024. Það er að öllu jöfnu kennt annað hvert ár.

Á námskeiðinu læra nemar að skipuleggja stærðfræðikennslu í framhaldsskóla þannig að hún sé fjölbreytt og taki mið af þörfum allra nemenda. Áhersla verður lögð á að nemendur kynnist fjölbreyttu námsumhverfi og kennsluháttum sem byggja á rannsóknum á stærðfræðinámi og -kennslu. Í námskeiðinu er fjallað um markmið stærðfræðináms og hvernig þau birtast í námskrám og stefnuritum bæði hér á landi og í nágrannalöndum. Nemendur lesa um og fá tækifæri til að reyna í verki fjölbreyttar leiðir við að meta og greina stærðfræðilega hæfni.
Vinnulag í námskeiðinu felst í fyrirlestrum, verkefnavinnu kynningum, vettvangstengdum viðfangsefnum og gagnrýnni umræðu um viðfangsefni. Áhersla verður lögð á að nemar ræði um áskoranir sem upp geta komið við kennslu og leiti sjálfir leiða við lausn á ýmsum vandamálum sem lúta að stærðfræðinámi og -kennslu.

X

Algebra (STÆ303G)

Grúpur, dæmi og helstu undirstöðuatriði. Samhverfugrúpur. Mótanir og normlegar hlutgrúpur. Baugar, dæmi og helstu undirstöðuatriði. Heilbaugar. Baugamótanir og íðul. Margliðubaugar og þáttun margliða. Valin viðfangsefni.

X

Reiknihugsun (SNU203M)

Markmið námskeiðsins er að gera nemendum kleift að beita forritun og reiknihugsun til að skapa tölvugrafík og leysa verkefni af ýmsu tagi, og jafnframt veita undirbúning til þess að kenna nemendum í grunn- og framhaldsskólum hið sama. Ekki er gert ráð fyrir að nemendur hafi fyrirfram þekkingu eða reynslu af forritun. 

Stærðfræðileg viðfangsefni námskeiðsins eru annars vegar úr hnitarúmfræði og hins vegar verður fjallað um grundvallaratriði reiknihugsunar: að þætta viðfangsefni í smærri verkefni; að finna mynstur; að draga út eiginleika (abstraction); að búa til reiknirit. Nemar læra um  notkun breytistærða, falla, lykkja og rökskilyrða í forritun. Nemar læra að nýta sér reiknihugsun til þess að smíða einföld grafísk líkön í tölvu, svo sem tölvuleiki eða listaverk, og að nota forritun til að leysa stærðfræðiverkefni.  

Á námskeiðinu læra nemar einnig að skipuleggja kennslu í grunn- og framhaldsskóla sem miðar að því að þroska reiknihugsun nemenda og getu til skapandi forritunar, auk nýtingar forritunar til að kanna stærðfræðileg viðfangsefni. Stærðfræðiforritið GeoGebra er sett í samhengi við reiknihugsun og möguleikar þess í stærðfræðikennslu kannaðir. Hugað er að stöðu forritunar og reiknihugsunar í samfélaginu og innan menntakerfisins, og tengslum við aðrar námsgreinar. 

Vinnulag í námskeiðinu felst fyrst og fremst í því að leysa verkefni, lestri og þátttöku í gagnrýnni umræðu.

X

Samæfingar í stærðfræði (STÆ402G)

Námskeiðið er ætlað nemendum sem lokið hafa að minnsta kosti 120 ECTS einingum. Nemendur sem ekki hafa lokið 120 ECTS einingum og hafa áhuga á að taka námskeiðið þurfa að fá samþykki umsjónarmanns fyrir þátttöku í námskeiðinu.

Hver nemandi velur og kynnir sér tiltekið afmarkað viðfangsefni stærðfræðinnar eða tölfræðinnar og fær leiðbeinanda tengdan því. Viðfangsefni eru ólík milli ára. Listi yfir viðfangsefni er gefinn út í upphafi eða aðdraganda námskeiðsins og einnig geta nemendur stungið upp á viðfangsefnum (að því gefnu að leiðbeinandi finnist). Nemendur skrifa ritgerð um sitt viðfangsefni og undirbúa og halda fyrirlestur um það á nemendaráðstefnu. Meðan á námskeiðinu stendur veita nemendur hvert öðru uppbyggilega endurgjöf bæði hvað varðar ritgerðarskrif og undirbúning á fyrirlestri. Auk þess að kynna eigin verkefni á nemendaráðstefnunni taka nemendur virkan þátt, hlusta á samnemendur sína og spyrja spurninga.

X

Slembiferli (STÆ415M)

Inngangsatriði slembiferla með megináherslu á Markovkeðjur.

Viðfangsefni: Hittitími, stöðuþáttun, óþáttanleiki, lota, endurkvæmni (jákvæð og núll-), hverfulleiki, tenging, endurnýjun, jafnvægi, tíma-viðsnúningur, tenging úr fortíðinni, greinaferli, biðraðir, martingalar, Brownhreyfing.

X

Gervigreind (REI505M)

Fjallað er um hugtök, aðferðir og reiknirit á sviði gervigreindar, með áherslu á studdan og óstuddan lærdóm. Forvinnsla og myndræn framsetning gagna. Mat á gæðum líkana og val á líkönum. Línuleg aðhvarfsgreining, næstu nágrannar, stoðvigravélar, tauganet, ákvarðanatré og safnaðferðir. Djúpur lærdómur. Þyrpingagreining og k-means aðferðin. Nemendur útfæra einföld reiknirit í Python og læra á sérhæfða forritspakka. Námskeiðinu lýkur með hagnýtu verkefni.

X

Kennileg línuleg tölfræðilíkön (STÆ310M)

Einföld og fjölvíð aðhvarfsgreining, fervikagreining og samvikagreining, ályktanir, dreifni og samdreifni metla, mátpróf með frávika- og áhrifagreiningu, samtíma ályktanir. Almenn líkuleg líkön sem ofanvörp, fervikagreining sem sértilvik, samtíma öryggismörk á samanburðarföll. R notað í verkefnum. Lausnum verkefna er skilað i LaTeX og PDF.

Til viðbótar  er tekið efni eftir vali, t.d. útvíkkuð línuleg líkön (GLM), ólínuleg aðhvarfsgreining og/eða slembiþáttalíkön (random/mixed effects models) og/eða skóreimaaðferðir (bootstrap) o.s.frv.

Nemendur kynna lausnir verkefna, sem áður hefur verið skilað inn í gegnum vefsíðu.

Námskeiðið er kennt þegar ártalið er slétt tala.

X

Grundvöllur tölfræðinnar (STÆ313M)

Sennileiki, tæmandi stærð, tæmanleikareglan, þvælistiki, skilyrðingarreglan, óbreytileikareglan, sennileikafræði. Tilgátupróf, einfaldar og samsettar tilgátur, Neyman-Pearson-setningin, styrkleiki, UMP-próf, óbreytileg próf. Umröðunarpróf, sætispróf. Bilmat, öryggisbil, öryggisstig, öryggissvæði. Punktmat, bjagi, meðalferskekkja. Verkefnum er skilað með notkun LaTeX og gilda 20% af lokaeinkunn.

X

Hagnýt hagnýtt stærðfræði (STÆ514M)

Meginmarkmið námskeiðsins er inngangur að ýmiss konar tækni í hagnýttri stærðfræði og beitingu hennar í hagnýtum verkefnum. Námskeið þetta er ætlað nemendum í MS- og PhD-stigi í verkfræði, raunvísindum og stærðfræði. (Stærðfræðinemum á 3 ári í BS-námi er heimilt að taka námskeiðið.)

Viðfangsefni: Dæmi um stærðfræðileg líkön í verkfræði og eðlisfræði, úrlausnaraðferðir, bæði fræðilegar og tölulegar, stærðfræðigreining á Banach rúmum, aðferð Newtons, Hilbert-rúm, helstu nálgunaraðferðir, dreififöll og nokkur atriði úr Fourier-greiningu.

X

Dreififöll (STÆ523M)

Fjallað er um undirstöðuatriði um dreififöll og hagnýtinga um hlutafleiðujöfnur.

Viðfangsefni: Prófunarföll, dreififöll, deildun dreififalla, samleitni runa af dreififöllum, Taylor-liðun í mörgum breytistærðum, staðbinding, dreififöll með þjappaða stoð, margföldun falla og dreififalla, samskeyting varpana og dreififalla, földun dreififalla, grunnlausnir, Fourier-ummyndun, Fourier-raðir, grunnlausnir og Fourier-ummyndun.

X

Inngangur að rökfræði (STÆ528M)

Röksemdafærslur, sannanir. Samtengingar, fullyrðingareikningur, sannföll og sísönnur. Formleg mál, frumsendur, rökreglur, sísönnusetningin. Magnarar. Mál og kenningar fyrstu stéttar. Mynstur og líkön. Fullkomleikasetningin. Setning Löwenheims og Skolems. Reiknanleiki, rakin föll. Setning Gödels.

X

Hagnýt Bayesísk tölfræði (STÆ529M)

Markmið: Að kenna nemendum að beita ýmsum aðferðum úr Bayesískri tölfræði fyrir greiningu gagna. Námsefni: Fræðileg undirstaða Bayesískrar ályktunartölfræði, fyrirframdreifingar, gagnadreifingar og eftirádreifingar. Bayesísk ályktunartölfræði fyrir stika í einvíðum og margvíðum líkindadreifingum: tvíkosta-; normal-; Possion; veldis-; margvíð normal-; fjölkostadreifing.  Mat á gæðum líkans og samanburður á líkönum: Bayesísk p-gildi; deviance information criterion (DIC). Bayesísk hermun: Markov keðju Monte Carlo (MCMC) aðferðir; Gibbs sampler; Metropolis-Hastings skref; mat á samleitni. Línuleg líkön: normal línuleg líkön; stigskipt normal línuleg líkön; almenn línuleg líkön. Áhersla á greiningu gagna með forritum eins og Matlab og R.

X

Rafmyntir (STÆ532M)

Í byrjun námskeiðsins eru grunnhugtök rafmynta kynnt til sögunnar, svo sem veski, veskisföng og færslur.  Nemendur kynnast dulkóðun, færslum, blokkum
og keðjum. Rafmyntin Broskallar verður notuð sem sýnidæmi í öllu námskeiðinu.
Nemendur þýða sín eigin veski og fara nægilega djúpt í algrímin á bak við myntirnar til að geta sett saman sínar eigin færslur af Linux skipanalínu og lesið dæmigerðan veskiskóða sem skrifaður er í C++.
Nemendur læra hvernig kalla má á veski úr öðrum hugbúnaði, m.a. til að greina flæði myntarinnar.
Nemendur læra hvernig má útfæra ýmsar viðbætur við hefðbunda notkun rafmynta, s.s. dulkóðun skilaboða, keyrslu hugbúnaðar sem svar við greiðslu o.s.frv. Nemendur setja upp eigin dæmi um viðbætur og læra m.a. hvernig má geta frumskipti (e. atomic swap) á mismunandi myntum.

Skilaverkefni verða einstaklingsbundin og valin úr nokkrum verkefnagerðum í formi (1) lausna sem byggja á notkun veskis á skipanalínu, (2) greinargerða sem mynda ítarefni í tutor-web kerfið (3) smáforrita sem bregðast við færslum sem koma inn á tiltekið veskisfang eða í tiltekið veski (4) forrita sem tala við kauphallir og/eða (5) ný notendaandlit sem bæta virkni framenda tiltekins veskis.

Allt efni námskeiðsins og skilaverkefni eru á ensku. Skilaverkefni enda sem hluti af opna vefkerfinu tutor-web.
Nemendur læra hvernig kalla má á veski úr öðrum hugbúnaði, m.a. til að greina flæði myntarinnar.
Nemendur læra hvernig má útfæra ýmsar viðbætur við hefðbunda notkun rafmynta, s.s. dulkóðun skilaboða, keyrslu hugbúnaðar sem svar við greiðslu o.s.frv. Nemendur setja upp eigin dæmi um viðbætur og læra m.a. hvernig má geta frumskipti (e. atomic swap) á mismunandi myntum og nota þá Broskalla sem tilkyninngakerfi.

Stefnt er að því að námskeiðið verði kennt sem lesnámskeið eða sjálfsnám, en nánari framkvæmd fer eftir þátttöku.

X

Formleg mál og reiknanleiki (TÖL301G)

Endanlegar stöðuvélar, regluleg mál og málskipan, staflavélar, samhengisóháð mál og málskipan, Turingvélar, almenn mál og málskipan og helstu eiginleikar þeirra.

Ávarðanleg og listanleg mál, yfirfærsla milli mála, tengsl við ákvörðnarverkefni og sönnun á óleysanleika slíkra verkefna. Flækjustigsflokkarnir P og NP og NP-fullkomleiki. Dæmi um ýmis líkön af reiknanleika.

X

Stærðfræðileg eðlisfræði (EÐL612M)

Markmið: Að kynna stærðfræðilegar aðferðir sem nytsamar eru í eðlisfræði og veita þjálfun í beitingu þeirra. Námsefni: Hljóðbylgjur í vökvum og lofttegundum. Spennutensor og þenslutensor, almennar hreyfingarjöfnur fyrir samfellt efni. Jarðskjálftabylgjur. Jöfnur Maxwells og rafsegulbylgjur. Flatar bylgjur, skautun, endurkast og brot. Dreififöll og Fourier-greining. Grunnlausnir og Green-föll hlutafleiðujafna. Bylgjur í einsleitum efnum. Lögmál Huygens og setning Leifs Ásgeirssonar. Tvístur (dispersion. Fasahraði og grúpuhraði. Jöfnur Kramers og Kronigs. Aðferð hins stöðuga fasa. Bylgjur á yfirborði vökva.

X

Stærðfræðigreining IV (STÆ401G)

Markmið: Að kynna fyrir nemendum Fourier-greiningu og hlutafleiðujöfnur og hagnýtingu á þeim.

Lýsing: Fourier-raðir og þverstöðluð fallakerfi, jaðargildisverkefni fyrir venjulega afleiðuvirkja, eigingildisverkefni fyrir Sturm-Liouville-virkja, Fourier-ummyndun, bylgjujafnan, varmaleiðnijafnan og Laplace-jafnan leystar á ýmsum svæðum í einni, tveimur og þremur víddum með aðferðum úr fyrri hluta námskeiðsins, aðskilnaður breytistærða, grunnlausn, Green-föll, speglunaraðferðin.

X

Grundvöllur líkindafræðinnar (STÆ418M)

Líkindi á grundvelli mál- og tegurfræði.

Viðfangsefni: Líkindi, útvíkkunarsetningar, óhæði, væntigildi. Borel-Cantelli-setningin og 0-1 lögmál Kolmogorovs.  Ójöfnur og hin veiku og sterku lögmál mikils fjölda. Samleitni í hverjum punkti, í líkindum, með líkunum einn, í dreifingu og í heildarviki. Tengiaðferðir. Höfuðmarkgildissetningin. Skilyrt líkindi og væntigildi.

X

Grannfræði (STÆ419M)

Almenn grannfræði: Grannrúm og samfelldar varpanir. Hlutrúm, faldrúm og deildarúm. Samhangandi rúm og þjöppuð rúm. Aðskilnaðarfrumsendur, hjálparsetning Urysohns og firðanleikasetning, algerlega regluleg rúm og þjappanir. 

X

Greining reiknirita (TÖL403G)

Aðferðir við hönnun og greiningu á tímaflækju reiknirita. Kynning og greining á reikniritum fyrir röðun, leit, netafræði og fylkjareikning. Torleysanleg vandamál, nálgunaraðferðir og slembin reiknirit.

Öll fög eru skyldufög nemaVValfagBBundið val er háð skilyrðum ENámskeiðið er ekki kennt á misserinuNámsleiðin í Kennsluskrá

Hvað segja nemendur?

Breki Pálsson
Breki Pálsson
Stærðfræði - BS nám

Ég valdi stærðfræði við Háskóla Íslands vegna þess að það gaf mér frelsi til að læra það sem ég hef áhuga á. Um þriðjungur námsins er tiltölulega frjáls og þar af leiðandi var auðvelt fyrir mig að fara í skiptinám og læra tungumál samhliða náminu mínu. Deildin býður upp á fjölbreytt úrval námskeiða með metnaðarfullum kennurum. Mér fannst námið vera bæði áhugavert og krefjandi. Það býður upp á miklu fleiri möguleika en ég hafði gert mér grein fyrir bæði hvað varðar framhaldsnám og starfsmöguleika. Með þeirri þekkingu sem ég hef öðlast tel ég mig vera vel undirbúinn til frekari náms. Ég mæli með að þú sækir um nám við Háskóla Íslands í stærðfræði.

Hafðu samband

Nemendaþjónusta VoN
s. 525 4466 - ​nemvon@hi.is
Opið virka daga frá 09:00-15:30

​Tæknigarður - Dunhaga 5, 107 Reykjavík
Askja - Sturlugata 7, 102 Reykjavík

Fylgstu með Verkfræði- og náttúruvísindasviði:

""

Hjálplegt efni

Ertu með fleiri spurningar? Hér finnurðu svör við ýmsum þeirra og upplýsingar um ýmislegt annað sem gott er að hafa í huga þegar þú velur nám.