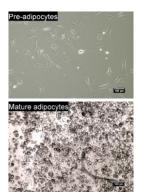


Anti-diabetic properties of *Fucus vesiculosus* and pine bark extracts using the adipocyte cell model 3T3-L1

Margrét Eva Ásgeirsdóttir, MSc student

Committee members:
Dr. Eva Küttner, Dr. Hörður G. Kristinsson and
Dr. Björn Viðar Aðalbjörnsson



Background

- Obesity is characterized by excess fat accumulation in adipocytes
- Major risk factor for secondary diseases like type 2 diabetes mellitus
- Progression of T2DM also linked with accumulation of free radicals
- Aim of this project to evaluate the effects of extracts on lipid accumulation in 3T3-L1 cells, inhibition against α-glucosidase and determine their antioxidant activity

Methods

Antioxidant activity

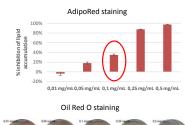
- TPC
- ORAC
- DPPH
- RP
- MC

Anti-diabetic

α-glucosidase inhibition

3T3-L1 cell model

- Viability assay
- Proliferation assay
- Oil Red O staining
- AdipoRed staining



Results

- Pine bark extract obtained the highest antioxidant activity and the most αglucosidase inhibitory activity
- F. vesiculosus water extract obtained the highest inhibition of lipid accumulation in the 3T3-L1 cells without affecting their viability

Conclusions

- *F. vesiculosus* extracts are effective inhibitors on lipid accumulation in 3T3-L1 cells
- Pine bark and F. vesiculosus extracts have potent antioxidant and α -glucosidase inhibitory activity
- Results could give rise to further research which could lead to development of a dietary enrichment compound

